

Using Modeled Cyber-Physical Systems for Independent Review of Intrusion Detection Systems

Sue Griffith Research Engineer UAH Center for Cybersecurity Research and Education

The Idea

- Create a virtual testbed of a cyber-physical system
- Create sample attacks
- Use standardized comparison metric
- Perform independent review of intrusion detection and prevention systems

Introduction – CPSs

- Cyber Physical System (CPS)
 - Physical system controlled by digital device(s)
 - Manufacturing, utilities, etc.
- Broken into five distinct parts (see below)
- Safer to test on model than actual
- Modeled system is a navigational lock

Dams 101 – Navigational Locks

- Used to raise and lower ships at dams
- Gates and valves operated remotely
- Shipping relies on smooth operation

https://www.lre.usace.army.mil/Missions/Recreation/Soo-Locks-Visitor-Center/Soo-Locks-Animation/

Virtual Testbed

Testbed – Physical System

- Physical system includes real, moving parts
 - Gates and valves
- Modeled in Matlab Simulink
- Output via UDP connection

Testbed – UDP Connection

- Data sent between physical system and PLC via UDP
- Emulating a wired connection
 - UDP send and forget
- UDP send/receive built into Simulink
- PLC's virtual machine has interface to convert protocol

Testbed – Controller

- PLC (Programmable Logic Controller)
 - Used to read sensor data and control actuators
 - Receives commands from operators
 - Runs code written in ladder logic
 - Usually have limited memory and processing
- Will use OpenPLC running on virtual machine

Testbed – Modbus

- Data sent between PLC and HMI over Modbus
- Standard, open protocol
- Can be sent over TCP (called "TCP Modbus")
- Simple to read and therefore manipulate
 - Device address
 - Function code
 - Payload (address to read, etc.)

Testbed – Human-Machine Interface

- HMI (Human Machine Interface)
- Used by operator to monitor and control physical parts
- Can be physical control panel or GUI
- Creating in ScadaBR
 - Free and open-source
 - Runs on server on host computer
 - Access via web browser

What to use it for? Testing IDS/IPSs

- Intrusion Detection and Prevention System (IDS/IPS)
 - Installed on host or network device
 - Monitors for potentially malicious data
- Have been studied for use on CPS controllers
- No set approach to testing effectiveness
- Need variety of attacks to test

- Three types chosen by frequency in literature
 - Reconnaissance
 - Man-in-the-Middle (MitM)
 - Denial of Service (DoS)
- To be sent in baseline, generic traffic

- Reconnaissance
 - No system change
 - Eavesdropping on network
 - Scanning addresses

- Man-in-the-Middle (MitM)
 - Use network access to interfere
 - Injection send commands or data
 - Replay record and send back
 - Alteration intercept, change, resend

- Denial of Service (DoS)
 - Make device unreachable
 - Overwhelm system with packets
 - Intercept and drop all data (DoS/MitM)

Attacks

#	Category	Attack Name	Description
1	Recon	Query 1	Query all addresses to find which are in use
2	Recon	Query 2	Query select addresses to find which are in use
3	Injection (MitM)	Com. Inj. 1	Inject random commands
4	Injection (MitM)	Com. Inj. 2	Inject sensical commands chosen by researcher
5	Injection (MitM)	Resp. Inj. 1	Inject random response values
6	Injection (MitM)	Resp. Inj. 2	Inject sensical response values
7	Injection (MitM)	Resp. Inj. 3	Inject out of bounds response values
8	Replay (MitM)	MitM Replay 1	Record and re-send sensor readings
9	Replay (MitM)	MitM Replay 2	Record and re-send commands from HMI
10	Alteration (MitM)	MitM Alt. 1	Record, change payload value randomly, re-send
11	Alteration (MitM)	MitM Alt. 2	Record, change payload value set amount, re-send
12	Alteration (MitM)	MitM Alt. 3	Record, change command randomly, re-send
13	Alteration (MitM)	MitM Alt. 4	Record, change to chosen command, re-send
14	DoS	DoS Flood 1	Flood with nonsensical packets
15	DoS	DoS Flood 2	Flood with valid packets
16	DoS/MitM	DoS/MitM	Intercept and drop all packets

Comparison Criteria

- IDS/IPS effectiveness will be determined by set criteria
 - Detected attacks
 - False positives flag safe traffic as malicious
 - False negatives flag malicious traffic as safe
 - Speed with which attack detected
 - Storage size of IDS/IPS
 - System functionality post-attack
- As with set of attacks, future users can easily add on

Running the Tests

- Must recreate these IDS/IPSs as best possible
 - Try to reproduce using publications
 - Contacting authors when possible
- Use previously discussed criteria to compare
- Publish results, improve field, etc.

Questions?

s.griffith@uah.edu Booth 220 uah.edu/ccre