il
sl

NATIONAL CYBER SUMMIT

June 5-7, 2018 | Huntsville, Alabama



J Mad? Binary Analysis with the Angr
-ramework

Ben Denton, PhD. | DESE Research, Inc.
bdenton@dese.com | @b_denton



mailto:bdenton@dese.com

ART THOU IRATE

Intro

* What is binary analysis?

* What is angr? (An unapologetic
oversimplification)

* Demos!

BRETHREN?



What is Binary Analysis?

 Software bugs have taken down spaceships?, caused nuclear
centrifuges to spin out of control 2, and forced the recall of 100,000s
of vehicles resulting in billions of dollars in damages 3.

* How can you find these bugs when source code is unavailable?

* Reverse Engineering, Vulnerability Assessment, and Binary Analysis
* Process: Disassemble, Triage, Understand, Analyze, Symbolize.

1 Ariane 5: Who Dunnit? https://ieeexplore.ieee.org/document/589224/
2 Lessons from Stuxnet https://ieeexplore.ieee.org/document/5742014/
3 A Case Study of Toyota Unintended Acceleration and Software Safety https://users.ece.cmu.edu/~koopman/pubs/koopmanl4 _toyota_ua_slides.pdf



https://ieeexplore.ieee.org/document/589224/
https://ieeexplore.ieee.org/document/5742014/
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

What is angr?

* Binary Analysis Framework developed by the University of California
Santa Barbara since 2013.

I
* Features: .
Binary Loader
* iPython accessible
e Powerful analyses Intermediate Representation
* Versatile angr —— |
Data Model Abstraction
* Open and expandable
* Architecture “independent” Symbolic Execution Engine

\\




Software Analysis

“How do | trigger path x or condition y?”

* Dynamic analysis
* Input a? No. Input b? No. Input c? ...
* Based on concrete inputs to application

* Static analysis
* “You can’t”
* “You might be able to...”
* “IDK”
* Based on various static techniques.




Symbolic Execution

“How do | trigger path x or condition y?”
1. Interpret the application.
2. Track “constraints” on variables.

3. When the required condition is triggered, “concretize” to obtain a
possible input.

Constraints

x >= 10
x < 100




Symbolic Execution Example

def f (x, y): This function swaps the
if (x > y): values of x and y when x > y.
X =X+ Yy
y =X - Y The x —y > 0 statement is
X =X -V always false so the call is
if (x -y > 0): unreachable.
call gQ)
return (x, y) Source code is here but our
techniques allow for the
same analysis without source
code.




Symbolic Execution Example

def f (x, y): Execute the program on symbolic values.

1f (x > y):
X =X + Y
y =X-Y
X =X -y
1if X -y > 0):
call gO
return (x, y)



Symbolic Execution Example

X—=>A

' - B
def f (x, y): Execute the program on symbolic values. y
if (x > y): Symbolic state maps variables to symbolic values.

X =X+ Y

y =X-Y
X =X -—-Y
if (x -y > 0):
call gO
return (x, y)



Symbolic Execution Example

def f (x, y):
if (x > y):
X =X + Y
y =X-Y
X =X -y
1if X -y > 0):
call gO

return (x, y)

Execute the program on symbolic values.

Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions take so far.

A>B/

X—=>A
y—>B

\ASB



Symbolic Execution Example

def f (x, y):
1f (x > y):
X =X + Y
y =X-Y
X =X -y
1if X -y > 0):
call gO

return (x, y)

Execute the program on symbolic values.

Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions take so far.

All paths in the program form its execution tree,
in which some paths are feasible and some are
infeasible.

X—=>A
A>B y=>8 A<B
>/ \ <
X—>A
y > B
feasible



Symbolic Execution Example

def f (x, y):

1f (x > y):
X =X + VY
y =X-Y
X =X -V
1if X -y > 0):
call gO

return (x, y)

Execute the program on symbolic values.

Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions take so far.

All paths in the program form its execution tree,
in which some paths are feasible and some are
infeasible.

X—=>A
y—>B
A>B / \A <B

Xx—>A+B X—>A
y>B y—>8B
true l feasible
x> A+B
y—2>A
true l
X—>B

y—2>A



Symbolic Execution Example

def £ (x,
if (x >
X = X

y = X

X = X

if (x

y):
y):

+

y
y
y

y > 0):

call gO
return (x, y)

Execute the program on symbolic values.

Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions take so far.

All paths in the program form its execution tree,
in which some paths are feasible and some are
infeasible.

x> A

y—>B
A>B ~ NA<B
Xx>A+B X—=>A
y>B y—>8B

true l feasible

x> A+B
y—2>A

true l

X—>B
y—2>A

B-A>o/ \B-Aso



Symbolic Execution Example

def f (x, y):
1f (x > y):
X =X + Y
y =X-Y
X =X -y
1if X -y > 0):
call gO

return (x, y)

X—>A
Execute the program on symbolic values. y—>B
: : : /\>§// \‘ASB
Symbolic state maps variables to symbolic values.
Path condition is a quantifier-free formula over XxX—>A+B X—>A
the symbolic inputs that encodes all branch y > B y—>B
decisions take so far. l .
true feasible
All paths in the program form its execution tree,
in which some paths are feasible and some are X>A+B
infeasible. y > A
true l
X—>B
y—2>A
B-A>0/ \,B-A<0
Xx—>B
y—2>A

infeasible



Symbolic Execution Example

def f (x, y):
1f (x > y):
X =X + Y
y =X-Y
X =X -y
1if X -y > 0):
call gO

return (x, y)

Execute the program on symbolic values.

Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions take so far.

All paths in the program form its execution tree,
in which some paths are feasible and some are
infeasible.

x> A
y—>B
A>%/
X—>A+8B
y—>B
truel
XxX—>A+B
y—2>A
truel
X—>B
y—2>A
B-A>o/ \B-Aso
x—>B x—>B
y—2>A y > A

infeasible feasible

\ASB
X—=>A
y—>B

feasible



Symbolic Execution Example

X = 1nt (input())

1if x < 10: Variables
if x < 100: x =1
pr1' nt “TWO!” Constraints
else:
print “Lots!”
else:

print “Onel!”



Symbolic Execution Example

X = 1nt (nput())
1f x < 10:
if x < 100:

print “Two!”
else:
print “Lots!”
else:
print “One

Variables
x =777

Constraints

'4 )’

Variables Variables
x =777 x =777
Constraints Constraints

x <10 x =10



Symbolic Execution Example

X = 1nt (input())
1f x < 10:
1f x < 100:

print “Two
else:
print “Lots!”
else:
print “One

Variables
x =777

Constraints
x <10

Variables
x =777

Constraints
x =10



Symbolic Execution Example

X int (Anput())
1f x < 10:
1f x < 100:
print “Two!”
else:
print “Lots!”
else:
print “One!”

Variables
x =777

Constraints
x <10

Variables
x =777

Constraints
x =10

'4 )

Variables Variables

x =777 x =777

Constraints Constraints
x =10 x =10

x <100 x =100



Symbolic Execution Example

X = 1nt Cinput()) Variab|
if x < 10: ol
1f X <1OO Constraints
print “Two!” x =10
else: <100
print “Lots!”
else:

print “One!”



Symbolic Execution Example

X = 1nt (Onput()) Varian
if x < 10: xala,,ff
-If X < ] 100 Constraints
print “Two!” x =10
else: x <100
print “Lots!” LL
else:
print “One!”
Variables

x =99



. * Available at
Demo: https://github.com/bendenton/2018 NCS
crackme



https://github.com/bendenton/2018_NCS

. * Available at
Demo: https://github.com/bendenton/2018 NCS
crackme?



https://github.com/bendenton/2018_NCS

. * Available at
Demo: https://github.com/bendenton/2018 NCS
crackme?3



https://github.com/bendenton/2018_NCS

Questions?

bdenton@dese.com
https://github.com/bendenton/2018 NCS

https://www.linkedin.com/in/ben-denton/



mailto:bdenton@dese.com
https://github.com/bendenton/2018_NCS
https://www.linkedin.com/in/ben-denton/

